Translational Neuroscience Case Study

A two tier approach to investigate compound activity on cortical neurons

Stage 1: Microelectrode array recordings (MEA): Rat cortical neurons

Neuronal activity substantially reduced by frequency-dependent sodium channel (Na,) blocker.

- Axion Maestro MEA recording system used; 768 electrodes; 48 wells; 16 electrodes per well.
- Rat cortical neurons cultured for 3 weeks; activity monitored throughout; activity stable after ~2 weeks.
- General activity, burst behaviour & synchronization examined.

Axion Maestro Platform & 48 well plate

Raster plots of bursting behaviour in example well (16 electrodes)

- Frequency-dependent Na, blocker reduced spontaneous firing, burst frequency & spikes per burst.
- Network bursting decreased & synchronization of bursting reduced.
- Assay allows investigation of multiple compounds / concentrations on neuronal firing behaviour.

Control

Stage 2: Manual patch current-clamp recordings: Rat cortical neurons

Evoked action potential train is truncated by frequency-dependent sodium channel blocker

1 sec current injection

Drug

- s @ 2 x threshold 200 ms Drug 50 µM Na, blocker Control
 - Evoked & spontaneous action potentials inhibited by Na. blocker.
 - Resting membrane potential & input resistance not significantly changed, ruling out alterations in passive membrane properties as the cause of the effects.
 - Rat cortical neuron patch clamp assay stable & sensitive to expected drug effects.
 - Assay allows investigation of compound effects on firing behaviour, validating mechanisms-of-action.

Control